RUNNING HEAD: STRATEGY SELECTION AS RATIONAL METAREASONING Strategy selection as rational metareasoning
نویسندگان
چکیده
Many contemporary accounts of human reasoning assume that the mind is equipped with multiple heuristics that could be deployed to perform a given task. This raises the question of how the mind determines when to use which heuristic. To answer this question, we developed a rational model of strategy selection, based on the theory of rational metareasoning developed in the artificial intelligence literature. According to our model people learn to efficiently choose the strategy with the best cost-benefit tradeoff by learning a predictive model of each strategy’s performance. We found that our model can provide a unifying explanation for classic findings from domains ranging from decisionmaking to arithmetic by capturing the variability of people’s strategy choices, their dependence on task and context, and their development over time. Systematic model comparisons supported our theory, and four new experiments confirmed its distinctive predictions. Our findings suggest that people gradually learn to make increasingly more rational use of fallible heuristics. This perspective reconciles the two poles of the debate about human rationality by integrating heuristics and biases with learning and rationality.
منابع مشابه
Algorithm selection by rational metareasoning as a model of human strategy selection
Selecting the right algorithm is an important problem in computer science, because the algorithm often has to exploit the structure of the input to be efficient. The human mind faces the same challenge. Therefore, solutions to the algorithm selection problem can inspire models of human strategy selection and vice versa. Here, we view the algorithm selection problem as a special case of metareas...
متن کاملWhen to use which heuristic: A rational solution to the strategy selection problem
The human mind appears to be equipped with a toolbox full of cognitive strategies, but how do people decide when to use which strategy? We leverage rational metareasoning to derive a rational solution to this problem and apply it to decision making under uncertainty. The resulting theory reconciles the two poles of the debate about human rationality by proposing that people gradually learn to m...
متن کاملLearning to select computations
Efficient use of limited computational resources is essential to intelligence. Selecting computations optimally according to rational metareasoning would achieve this, but rational metareasoning is computationally intractable. Inspired by psychology and neuroscience, we propose the first learning algorithm for approximating the optimal selection of computations. We derive a general, sample-effi...
متن کاملToward Boundedly Rational Analysis
The Bayesian program in cognitive science has been subject to criticism, due in part to puzzles about the role of rationality and approximation. While somewhat sympathetic with these concerns, I propose that a thoroughgoing boundedly rational analysis strategy can answer to some of them. Through simulation results I illustrate the method by showing how one can retrodict recently reported result...
متن کاملRational Deployment of Multiple Heuristics in IDA
Recent advances in metareasoning for search has shown its usefulness in improving numerous search algorithms. This paper applies rational metareasoning to IDA* when several admissible heuristics are available. The obvious basic approach of taking the maximum of the heuristics is improved upon by lazy evaluation of the heuristics, resulting in a variant known as Lazy IDA*. We introduce a rationa...
متن کامل